Multiplications on projective spaces.
نویسندگان
چکیده
منابع مشابه
on projective spaces
We prove that a one-dimensional foliation with generic singularities on a projective space, exhibiting a Lie group transverse structure in the complement of some codimension one algebraic subset is logarithmic, i.e., it is the intersection of codimension one foliations given by closed one-forms with simple poles. If there is only one singularity in a suitable affine space, then the foliation is...
متن کاملGeodesics on Weighted Projective Spaces
We study the inverse spectral problem for weighted projective spaces using wave-trace methods. We show that in many cases one can “hear” the weights of a weighted projective space.
متن کاملLeibniz Algebras, Courant Algebroids, and Multiplications on Reductive Homogeneous Spaces
We show that the skew-symmetrized product on every Leibniz algebra E can be realized on a reductive complement to a subalgebra in a Lie algebra. As a consequence, we construct a nonassociative multiplication on E which, when E is a Lie algebra, is derived from the integrated adjoint representation. We apply this construction to realize the bracket operations on the sections of Courant algebroid...
متن کاملProjective embedding of projective spaces
In this paper, embeddings φ : M → P from a linear space (M,M) in a projective space (P,L) are studied. We give examples for dimM > dimP and show under which conditions equality holds. More precisely, we introduce properties (G) (for a line L ∈ L and for a plane E ⊂ M it holds that |L ∩ φ(M)| 6 = 1) and (E) (φ(E) = φ(E) ∩ φ(M), whereby φ(E) denotes the by φ(E) generated subspace of P ). If (G) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 1969
ISSN: 0026-2285
DOI: 10.1307/mmj/1029000312